Direct Antioxidant Properties of Bilirubin and Biliverdin. Is there a Role for Biliverdin Reductase?
نویسندگان
چکیده
Reactive oxygen species (ROS) and signaling events are involved in the pathogenesis of endothelial dysfunction and represent a major contribution to vascular regulation. Molecular signaling is highly dependent on ROS. But depending on the amount of ROS production it might have toxic or protective effects. Despite a large number of negative outcomes in large clinical trials (e.g., HOPE, HOPE-TOO), antioxidant molecules and agents are important players to influence the critical balance between production and elimination of reactive oxygen and nitrogen species. However, chronic systemic antioxidant therapy lacks clinical efficacy, probably by interfering with important physiological redox signaling pathways. Therefore, it may be a much more promising attempt to induce intrinsic antioxidant pathways in order to increase the antioxidants not systemically but at the place of oxidative stress and complications. Among others, heme oxygenase (HO) has been shown to be important for attenuating the overall production of ROS in a broad range of disease states through its ability to degrade heme and to produce carbon monoxide and biliverdin/bilirubin. With the present review we would like to highlight the important antioxidant role of the HO system and especially discuss the contribution of the biliverdin, bilirubin, and biliverdin reductase (BVR) to these beneficial effects. The BVR was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubin by the BVR, linking this sink for oxidants to the NADPH pool. To date the existence and role of this antioxidant redox cycle is still under debate and we present and discuss the pros and cons as well as our own findings on this topic.
منابع مشابه
Biliverdin reductase: a major physiologic cytoprotectant.
Bilirubin, an abundant pigment that causes jaundice, has long lacked any clear physiologic role. It arises from enzymatic reduction by biliverdin reductase of biliverdin, a product of heme oxygenase activity. Bilirubin is a potent antioxidant that we show can protect cells from a 10,000-fold excess of H2O2. We report that bilirubin is a major physiologic antioxidant cytoprotectant. Thus, cellul...
متن کاملA substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity
Biliverdin reductase catalyses the last step in haem degradation and produces the major lipophilic antioxidant bilirubin via reduction of biliverdin, using NAD(P)H as a cofactor. Despite the importance of biliverdin reductase in maintaining the redox balance, the molecular details of the reaction it catalyses remain unknown. Here we present the crystal structure of biliverdin reductase in compl...
متن کاملBiliverdin reductase: new features of an old enzyme and its potential therapeutic significance.
Biliverdin reductase (BVR) was known for a long time solely as an enzyme converting biliverdin to bilirubin, the major physiological antioxidant. Recent years revealed unique features of this protein which are not related to its reductase activity. The most intriguing and surprising finding is its dual-specificity kinase character. As such serine/threonine/tyrosine kinase BVR is involved in reg...
متن کاملBilirubin and glutathione have complementary antioxidant and cytoprotective roles.
Glutathione (GSH) and bilirubin are prominent endogenous antioxidant cytoprotectants. Despite tissue levels that are thousands of times lower than GSH, bilirubin is effective because of the biosynthetic cycle wherein it is generated from biliverdin by biliverdin reductase (BVR). When bilirubin acts as an antioxidant, it is oxidized to biliverdin, which is immediately reduced by BVR to bilirubin...
متن کاملNuclear localization of biliverdin reductase in the rat kidney: response to nephrotoxins that induce heme oxygenase-1.
Biliverdin reductase catalyzes the reduction of biliverdin, the product of heme oxygenase (HO) activity, to bilirubin. The reductase is unique among all enzymes characterized to date in being dual pH/cofactor-dependent. Until now the enzyme was assumed to be a noninducible cytosolic protein. This report, for the first time, demonstrates induction and nuclear localization of reductase in rat kid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012